
1. Headless set-up

1.1 Intro
Every time I deploy a new pi, something has changed. This makes it difficult to create a simple set-up that

works every time. It also means that almost all instructions you find on the internet are outdated. Google is

great in finding set-up instructions from back in 2012, but those do not work anymore. And most

instructions do not have a date in them, so you’re completely lost why it doesn’t work.

This instruction is made for people that have Linux running. It is updated after each time I (re-)install a Pi.

Version Date Raspian Comment

1 2017-06-21 Jessie

2 2017-12-29 2017-11-29-raspbian-

stretch

3 2017-12-29 2017-11-29-raspbian-

stretch

4 2019-01-19 2018-11-13-raspbian-

stretch.img

5 2020-03-18 2020-02-13-raspbian-

buster

6 2021-02-23 2020-02-13-raspbian-

buster.img

installed psi

7 2021-08-12 2020-02-13-raspbian-

buster.img

installed blueberry

1.2 Burning the image
First get the latest Raspian:

wget http://downloads.raspberrypi.org/raspbian_latest

What you’ll get is a zip-file with the latest raspian-image. Unzip and burn on the SD-card.

Many tutorials go into great length on how to identify your SD-card. In most cases, it is /dev/mmcblk0 or

one of the /dev/sd* devices.

mv raspbian_latest raspbian_latest.zip
unzip raspbian_latest.zip
sudo dd if=2020-02-13-raspbian-buster.img of=/dev/mmcblk0 status=progress

Of course, this takes a long time; that is why the status=progress is on the command line. Total is about

3.6G.

Remove the card and plug it back in. Normally, it will be mounted automatically, and you will see:

/dev/mmcblk0p1 on /run/media/ljm/boot type vfat
/dev/mmcblk0p2 on /run/media/ljm/5c01c1ce-fe60-428a-8e68-0be0e8ed6b7a type ext4

Otherwise, mount by hand.

For raspian-stretch and buster, the root file system will be called rootfs instead of the big number.

- 1 -

Raspberry Pi

1.3 The networking
Because from Jessie on, it is now using systemd, everything you knew about the configuration of

networking is now of no value. In previous releases, networking was done via /etc/network/interfaces

but now, dhcpcd is used. It also means that all tutorials and howto’s are now obsolete.

The main configuration file for dhcpcd is /etc/dhcpcd.conf. For every connection that you want to

have a fixed IP address add a block, of course with your own IP addresses:

interface eth0

static ip_address=192.168.178.53/24
static routers=192.168.178.1
static domain_name_servers=192.168.178.6

interface wlan0

static ip_address=192.168.178.3/24
static routers=192.168.178.1
static domain_name_servers=192.168.178.6

For some dark and unknown reason, you sometimes need to edit /etc/network/interfaces to add

allow-hotplug eth0

Next, setup the wpa-supplicant in etc/wpa_supplicant/wpa_supplicant.conf

country=GB
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1

network={
ssid="ssidforwifi"
psk="wifipsk"

}

You will need to copy the wpa_supplicant.conf file for your particular wireless network in the boot folder,

and when the Pi first boots, it will copy that file into the correct location in the Linux root file system and

use those settings to start up wireless networking. After the Pi is connected to power, make sure to wait a

few (up to 5) minutes for it to boot up and register on the network. The Pi’s IP address will not be visible

immediately after power on, so this step is crucial to connect to it headlessly. Depending on the OS and

editor you are creating this on, the file could have incorrect newlines or the wrong file extension so make

sure you use an editor that accounts for this.

1.4 Enable ssh
Enabling ssh requires an ssh file in the boot directory. Normally, you see a directory

/dev/mmcblk0p1 /run/media/username/boot

if you query all mounts. So do a

touch /run/media/username/boot/ssh

and ssh will start at boot-time.

But you don’t want to type passwords, so we’ll distribute the keys:

- 2 -

Raspberry Pi

cd $piroot/root
mkdir .ssh
chown root.root .ssh
chmod 700 .ssh
cp ˜/.ssh/id_rsa.pub .ssh/authorized_keys
chmod 600 .ssh/authorized_keys

1.5 Connecting and manual actions.
If you do it in this way, everything should run and the pi should be accessible under your WiFi IP address.

Try a ssh root@192.168.178.3 (use your own IP address) and voila.

There are some manual actions to take before everything works. First, make your users that need to be

present on the system. In my case, that is "ljm":

adduser ljm
mkdir /home/ljm
cp -r /root/.ssh ˜ljm
chown -R ljm.ljm ˜ljm/.ssh

Next item on the list: raspi-config. Use the menus to set the host name. But more importantly, under 7

Advanced Options you will find A1 Expand File system which will allow you to use the complete sd

card.

Under Buster, you will need to set under

4 Localisation Options

the Wifi country

I4 Change Wi-fi Country

Do not reboot after this!

Make vi our default editor:

update-alternatives --set editor /usr/bin/vim.tiny

you will also need to add the users in the sudoers-file:

ljm ALL=(ALL:ALL) NOPASSWD: ALL

If you want to manage your pi via Ansible, you may want to

sudo apt-get install -y aptitude

And to be up-to-date, do:

- 3 -

Raspberry Pi

apt-get update
apt-get upgrade

This may take a very long time. You will may see a lot of lines

Removing ’diversion of /boot/bootcode.bin to /usr/share/rpikernelhack/bootcode.bin by rpikernelhack’
Removing ’diversion of /boot/start4.elf to /usr/share/rpikernelhack/start4.elf by rpikernelhack’
Removing ’diversion of /boot/start4cd.elf to /usr/share/rpikernelhack/start4cd.elf by rpikernelhack’
Removing ’diversion of /boot/start4db.elf to /usr/share/rpikernelhack/start4db.elf by rpikernelhack’
Removing ’diversion of /boot/start4x.elf to /usr/share/rpikernelhack/start4x.elf by rpikernelhack’

which take a while to complete. When I did this, it took about two hours.

And now: reboot

1.6 Security
With this set-up you can add the pi to your local network. Not to the Internet. There are a lot of security

implications that we have not considered. One of the most important is that the user pi is still present and

having his default password. Also the NOPASSWD in the sudoers is practical, but a bad idea security-wise.

The goal of this part was to get the pi working; not to make it secure.

1.7 note
Raspberry Pi is a trademark of the Raspberry Pi Foundation.

- 4 -

Raspberry Pi

2. 433MHz

2.1 Introduction
In the Netherlands, and perhaps beyond our borders too, there is a simple system for remote switching of

lights, called Klik aan Klik uit (KAKU). Although not the cheapest option available, it is quite

affordable, especially if you use the APA3-1500R Starterset.

Although a complete Internet solution is available using "The Cloud", I decided that one of my Pi’s would

be just as good.

There are a number of steps to be taken to get a working solution. I have tied to keep it as simple as

possible. This means that I have not always chosen the cheapest solution.

2.2 Step 1: Transmitter hardware
The KAKU works at 433MHz. That means we need a 433MHz transmitter. These things are cheap and it

does not really matter which one you choose. I took this one. I use female-female jumper wires to

connect the transmitter to the Pi.

Pin Color Function Comment

1 black Ground

2 blue Data

3 red Vcc 5V; maximum is 12V

4 yellow Antenna marked ANT; should

be 16.7 cm

These are connected to the Pi as follows:

In practice, this means that GPIO14 is used:

- 5 -

Raspberry Pi

2.3 Step 2: Transmitter software
To test the set-up, we need some software to send control signals. In general, all source software is under

˜/src in my set-up. You might want to follow that. So, mkdir ˜/src if that directory does not exist. Also,

you need GIT, so sudo apt-get install git if you haven’t done that earlier.

The software set-up comes in two parts:

— the libraries to send the signals

— a front-end to do the switching

First, install the libraries. In buster, this should be part of the distribution, but it doesn’t hurt to make sure it is

installed.

sudo apt-get install wiringpi

Next, a simple CLI front-end:

cd ˜/src
git clone https://github.com/chaanstra/raspKaku
cd raspKaku
g++ -o kaku kaku.cpp -I/usr/local/include -L/usr/local/lib -lwiringPi

Get a simple wall-plug from KAKU, plug it in ans do sudo ./newkaku 1 A on within two seconds. And Lo and

Behold: It switches! You can switch it off again with sudo ./newkaku 1 A off

Install newkaku in /usr/local/bin and make it set-uid:

sudo cp newkaku /usr/local/bin
sudo chmod u+s /usr/local/bin/newkaku

- 6 -

Raspberry Pi

2.4 A website to switch
CLI is for real geeks; if you want to show your familiy and friends that it works, you will need a simple website.

2.4.1 Install a webser ver
First that means that you should install a web server. My choice is Apache. I also dislike installing by hand. I

therefore use an Ansible playbook.

tasks/main:

- name: install apache

become: yes
apt:
name:
- apache2

- name: enabled mod_rewrite
apache2_module: name=rewrite state=present
become: yes
notify:
- restart apache2

- name: enable cgi
become: yes
apache2_module:

state: present
name: cgid

notify:
- restart apache2

- name: copy default site
become: yes
copy:

src: 000-default.conf
dest: /etc/apache2/sites-available

notify:
- restart apache2

handlers/main.yml

- name: restart apache2

become: yes
service: name=apache2 state=restarted

files/000-default.conf

LoadModule cgid_module modules/mod_cgid.so
<VirtualHost *:80>

ServerAdmin webmaster@localhost
DocumentRoot /var/www/html
ScriptAlias "/cgi-bin/" "/var/www/cgi-bin/"

ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR}/access.log combined

</VirtualHost>

If you are not using Ansible, use the 000-default.conf and put it in sites_enabled

- 7 -

Raspberry Pi

2.4.2 The website
I made a directory /var/www/data/kaku where all the data for my CGI script is stored. In that directory, there are

two files:

— data

— codes

In the codes file, the codes for switching are placed:

0;all;11110001,11110002,11110003,11110004
101;switch 1;11110001
102;switch 2;11110002
103;switch 3;11110003
104;switch 4;11110004

The data file is used for a simple timer interface to the cronjob.

The scripts are in

CGI script and cronjob (a workable version) or at "https://github.com/ljmdullaart/kakuweb" (the most

recent version).

2.5 note
Raspberry Pi is a trademark of the Raspberry Pi Foundation.

- 8 -

Raspberry Pi

3. Bitcoin mining with a pi

3.1 Intro
If you don’t know what bitcoins are, or if you expect to get a miner that gets you rich quickly, skip this.

Long time ago, I had a small USB stick for bitcoin mining. It gav e me a whooping 300Mh/s, which was about ten

times what I got from mining with my display adapter. Due to various reasons, I shelved the stick.

Now, I recently found it back, and although it is not really a profit-mining, it takes very little power, especially if

connected to a raspberry pi. So, mostly for nostalgic reasons, I have re-activated my USB-miner.

The pool that I used in the past is now defunct, so I decided to use slushpool basically because it is as good as any

(at least at this stage).

3.2 Setting up the miner

3.2.1 Make an account
You hav e to make an account, which will verify your e-mail

3.2.2 Install the software
First, install the dependencies:

apt-get update
apt-get install autoconf autogen libtool uthash-dev libjansson-dev libcurl4-openssl-dev libusb-dev libncurses-dev git-core
apt-get install libevent-dev

Then, get a git-clone of the bfgminer

git clone https://github.com/luke-jr/bfgminer.git
cd bfgminer
make

And start mining:

And see the satoshis rolling in:

- 9 -

Raspberry Pi

bfgminer version 5.4.2-7-g9f781b8 - Started: [2017-11-29 20:32:52] - [0 days 01:19:06]
[M]anage devices [P]ool management [S]ettings [D]isplay options [H]elp [Q]uit
Pool 0: ...m.slushpool.com Diff:128 +Strtm LU:[21:51:36] User:myuserid.worker1
Block #496752: ...db12af37 Diff:1.35T (9.64E) Started: [21:49:36] I: 1.80nBTC/hr
ST:3 F:1 NB:7 AS:0 BW:[47/ 3 B/s] E:2.15 BS:617
1 | 332.8/333.1/221.6Mh/s | A:2 R:0+1(33%) HW:0/none
--
BES 0: | 335.9/332.9/221.4Mh/s | A:2 R:0+1(33%) HW:0/none
--
[2017-11-29 21:46:35] Stratum from pool 0 detected new block
[2017-11-29 21:49:36] Stratum from pool 0 detected new block

Some calculations:

1.8 nBTC/hr

43.2 nBTC/day

302.4 nBTC/week

1296 nBTC/month

0.153 mBTC/year

65 years before payout

hmmm.... Lets get another pool...

3.3 note
Raspberry Pi is a trademark of the Raspberry Pi Foundation.

- 10 -

Raspberry Pi

4. Change to SSL

4.1 Intro
At some point in time, you will want to upgrade your web server to SSL. This is how I did it.

4.2 Let’s encr ypt
The certificate-part is taken from "https://www.pestmeester.nl/index.html#10.0" and adapted to my situation.

Certbot or Let’s Encrypt is not natively compiled in Raspbian. So we will have to install it manually. First, install

GIT:

sudo apt-get install git

Next get a clone of Let’s Encrypt.

sudo git clone https://github.com/certbot/certbot /etc/letsencrypt

Now we’re going to get those certificates. I run a single domain on my server, "ljm.name" The first time you apply

for a certificate, you’ll get an account. The next time you apply for new certificates, they will just be added to the

same account.

For my domain I got 1 certificate: ljm.name

sudo /etc/letsencrypt/certbot-auto certonly --agree-tos --webroot -w /links/www -d ljm.name

Follow the instructions, especially the first time to create the account (by filling out email, password, agree with

TOS, etc.).

After successful validation and installation you should see the message:

Congratulations! Your certificate and chain have been
saved at /etc/letsencrypt/live/mysite.com/fullchain.pem.
Your cert will expire on 2017-05-09.
To obtain a new or tweaked version of this certificate in
the future, simply run certbot-auto again. To
non-interactively renew *all* of your certificates,
run "certbot-auto renew"

Create a cronjob to automate certificate renewal

sudo crontab -e

0 6 * * * /etc/letsencrypt/certbot-auto renew --text >> /etc/letsencrypt/certbot/certbot-cron.log

This cron job runs daily, but the certificate is only renewed if it is less than 30 days until expiry.

- 11 -

Raspberry Pi

4.3 Apache
Apache has always been a PITA to configure, and enabling SSL is no exception to that. First, under

/etc/apache2/sites-available create a copy of default-ssl and name it ssl.

In ssl I set the following:

<IfModule mod_ssl.c>
<VirtualHost _default_:443>

ServerAdmin webmaster@localhost

DocumentRoot /room/sda1/www/html
<Directory />

Options FollowSymLinks
AllowOverride None

</Directory>
<Directory /var/www/>

Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny
allow from all

</Directory>
ErrorLog ${APACHE_LOG_DIR}/error.log

LogLevel warn

CustomLog ${APACHE_LOG_DIR}/ssl_access.log combined
SSLEngine on

SSLCertificateFile /etc/letsencrypt/live/ljm.name/cert.pem
SSLCertificateKeyFile /etc/letsencrypt/live/ljm.name/privkey.pem
SSLCertificateChainFile /etc/letsencrypt/live/ljm.name/fullchain.pem
BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown

</VirtualHost>
</IfModule>

Make a link in /etc/apache2/sites-enabled reload apache and ...

Nothing.

netstat -an does not give port 443 as LISTEN. No log records to help, starting in debug mode doesn’t giv e

additional information, just nothing. So,...

First thing is to enable the apache SSL module. The fact that this module is a standard part of the distribution, and

that Apache recommends using SSL doesn’t mean that the SSL module is enabled by default. Sigh..

a2enmod ssl

reload apache and ...

Nothing.

Remove 000-default Reload apache and suddenly it starts working. However, now my http site is gone. ls -s

../sites-available/default http solves that problem. Apparently, 000-default prevents other sites from being

enabled.

4.4 note
Raspberry Pi is a trademark of the Raspberry Pi Foundation.

- 12 -

Raspberry Pi

5. A mail server
Setting up a mail server has two big problems:

— It is difficult to maintain; especially the security patches are a PITA

— Mail server set-up is complicated. Very complicated.

There are two solutions for that:

— With fetchmail you do not need to expose your mail server to the Internet

— With citadel setting up the mail server is easy

So, Citadel it is.

5.1 Install Citadel on a Pi

5.1.1 Considerations
You will be wanting to keep quite a lot of mail on-line. The SD card is not the right place to do that. And, although

you could use a USB stick, I would recommend spinning rust. You will need to put /var/lib/citadel on that disk.

You could choose to put /var completely on the disk, which will further relieve your SD card from write actions.

I would not state that mail is the most important thing in life, but I would be pretty miffed if I lost my mail. So a

backup is required for me.

Installing Citadel is an interactive process. You will be prompted with Package Configuration dialogs, that may

change from version to version. I would have loved to install Citadel with Ansible, but I failed to do that

consistently.

5.1.2 The installation

5.1.3 Via apt-get
The default installation method for Citadel on a Pi is:

sudo -s
apt-get update
apt-get upgrade
apt-get install citadel-suite

You will see a number of dialog screens:

— Please specify the IP address which the server should be listening to. 0.0.0.0 is OK, because we’re not

exposing it to the Internet.

— Authentication method to use: I use Internal, because I do not serve an LDAP or AD

— Citadel administrator username: admin is fine; choose your own password.

— Use internal for webcit, unless you plan to integrate it with Apache

— HTTP port 80, HTTPS 443

— User defined language

which is basically all the defaults. (If that was consistent I could install it via Ansible...)

- 13 -

Raspberry Pi

5.1.4 Easy install
The problem with Easy Install is, that it is neither easy nor quick. The difficult part of the "easy" install is the

dependencies. On my raspian, I had to install a number of development packages before the compiles succeeded.

sudo -s
cd /root
apt-get install libical-dev
apt-get install libldb-dev libldap2-dev
apt-get install gettext
apt-get install autoconf
apt-get install libcurl4-openssl-dev
curl http://easyinstall.citadel.org/install | sh

Answer the questions that after a while appear, and you’re in business. Login as admin and create your own user-id

under the Administration button. For testing purposes, I also created a test-user, aptly named test.

5.2 Fetchmail
To get the mail in, I use fetchmail. This allows me to have different mail providers and get it all in one mailbox at

home.

Installing is, as you’d expect:

sudo apt-get install fetchmail

Next, make for every user a .fetchmailrc in their home directory. The file should look like this:

poll pop.provider1.nl with proto POP3
user "username" , with password "secret" , is my_name here warnings 3600
user "second_user" , with password "hemlighet" , is my_name here warnings 3600

user "third_user" , with password "tajomstvo" , is my_name here warnings 3600
poll pop.provider2.nl with proto POP3

user "mailbox" , with password "geheim" , is my_name here warnings 3600

And you might put in the crontab for the user:

0,15,30,45 * * * * /usr/bin/fetchmail -v > /tmp/user.last_mail_fetch 2>/tmp/user.last_mail_error

to get mail every 15 minutes.

5.3 A backup server
A backup server is just another instance of Citadel. Every night, I make a backup of the relevant files to the backup

server. I do a full backup; that means that I shutdown the primary mail server before the backup.

When the backup server is a newer version you cannot just copy the files to the backup server. Citadel will refuse to

start, complaining about having both new and legacy configuration. apparently, citadel converts much of the legacy

to the new when it starts up.

So, for me, the backup script is as follows. Note that sigma is the name of the backup server.

- 14 -

Raspberry Pi

logger "BACKUP:citadel:START"
/etc/init.d/citadel stop
ssh sigma /etc/init.d/webcit stop
ssh sigma /etc/init.d/citadel stop
sleep 60
logger "BACKUP:citadel:STOPPED"
ssh sigma rm -rf /var/lib/citadel.old/*
ssh sigma rm -rf /etc/citadel.old/*
ssh sigma mv /var/lib/citadel/* /var/lib/citadel.old
ssh sigma mv /etc/citadel/* /etc/citadel.old

scp -r /var/lib/citadel/* sigma:/var/lib/citadel
scp -r /etc/citadel/* sigma:/var/lib/citadel/etc
scp ˜ljm/.fetchmailrc sigma:/var/lib/citadel/fetchmailrc
logger "BACKUP:citadel:COPIED to sigma"

ssh sigma /etc/init.d/citadel start
ssh sigma /etc/init.d/webcit start
/etc/init.d/citadel start
logger "BACKUP:citadel:RESTARTED"
logger "BACKUP:citadel:END"

As a bonus, there is an extra copy of the mail (1 day older) that is saved.

5.4 note
Raspberry Pi is a trademark of the Raspberry Pi Foundation.

- 15 -

Raspberry Pi

6. home.pl
CGI script for a simple home-webserver

#!/usr/bin/perl
#REMOTE@ chi /var/www/cgi-bin/home.pl
use strict;
use CGI;
use POSIX qw(strftime);

my $datafile=’/var/www/data/kaku/data’;
my $codefile=’/var/www/data/kaku/codes’;

my %crons;
my $display=’switch’;

if (open (my $DATA, "<", $datafile)){
while (<$DATA>){

chomp;
(my $key,my $value)=split ’,’;
$crons{$key}=$value;

}
close $DATA;

}
my $query = CGI->new();
print $query->header("text/html");
print $query->start_html(

-title => "Home",
-style => "http://chi.home/kaku.css",
-meta => {

viewport => ’width=device-width,initial-scale=1,user-scalable=yes’
}

);

my $debugout;

my $action=’none’;
my @lines ;

my %codes;
my %codelist;
if (open (my $CODES, "<", $codefile)){

while (<$CODES>){
chomp;
s/#.*//;
my @a=/;/g;
if (scalar @a == 2){

(my $key,my $name,my $list)=split ’;’;
$codes{$key}=$name;
$codelist{$key}=$list;

}

}
close $CODES;

}
else {

print "<p>No code file</p>";
}

read form data

my %params=$query->Vars;

if ($params{"display"} ne ’’){
$display=$params{"display"};

}
if ($params{"clock"} ne ’’){

$display=’clock’;
}
if ($params{"switch"} ne ’’){

$display=’switch’;
}

for my $k (keys %codes){
if ($params{"aan$k"} ne ’’){

$action="aan$k";
$display=’switch’;

}
if ($params{"uit$k"} ne ’’){

$action="uit$k";

- 16 -

Raspberry Pi

$display=’switch’;
}
for (my $i=0; $i<24; $i++){

if ($params{"c$i$k"} ne ’’){
$action="c$i$k";
$display=’clock’;

}
}

}
#
if ($action =˜ /aan(..*)/) {

my $key=$1;
my @list=split(’,’,$codelist{$key});
for (@list){

system ("logger KAKU $_ 1 on");
system ("newkaku $_ 1 on | logger 2>&1");

}
}
elsif ($action =˜ /uit(..*)/) {

my $key=$1;
my @list=split(’,’,$codelist{$key});
for (@list){

system ("logger KAKU $_ 1 off");
system ("newkaku $_ 1 off | logger 2>&1");

}
}
elsif ($action =˜/ˆc/){

for my $k (sort (keys %codes)){
my $hr;
if (exists ($crons{$k})){

if ($action =˜ /c([0-9]*)$k/){
$hr=$1;
if ($crons{$k}=˜/on$hr;/){

$crons{$k}=˜s/on$hr;/off$hr;/;
}
elsif ($crons{$k}=˜/off$hr;/){

$crons{$k}=˜s/off$hr;//;
}
else {

$crons{$k}="$crons{$k}on$hr;";
}

}
}

}
}

if (open (my $DATA, ">", $datafile)){
for my $k (sort (keys %codes)){

print $DATA "$k,$crons{$k}\n";
}
close $DATA;

}

#
provide the output
#
#
#
#
print $query->h1("Klik Aan, Klik Uit");
print "\n";
print $query->hr;
print $query->start_form;
print $query->submit(

-name => "switch",
-value => ’switch’,
-class => ’tab’,

);
print $query->submit(

-name => "clock",
-value => ’clock’,
-class => ’tab’,

);
print $query->hidden(

-name => ’display’,
-value => $display,

);
if ($display eq ’switch’){

print "<table class=’switchtable’>";
print "\n";

- 17 -

Raspberry Pi

for my $k (sort (keys %codes)){
print " <tr>\n <td class=’swname’>$codes{$k}</td>\n <td class=’swon’>";
print $query->submit(

-name => "aan$k",
-value => ’aan’,
-class => ’onoff’,

);
print "</td>\n <td class=’swoff’>";
print $query->submit(

-name => "uit$k",
-value => ’uit’,
-class => ’onoff’,

);
print "</td>\n </tr>\n";

}
print "</table>";
#

}
elsif ($display eq ’clock’){

print "<table>";
print "\n";
for my $k (sort (keys %codes)){

print " <tr>\n <td>$codes{$k}</td>\n <td>";
for (my $i=0; $i<24;$i++){

print "</td>\n <td>";
my $style;
$style=’cron’;
if ($crons{$k}=˜/on$i;/){

$style=’cronon’;
}
if ($crons{$k}=˜/off$i;/){

$style=’cronoff’;
}
print $query->submit(

-name => "cik",
-value => "$i",
-class => $style,

);
}
print "</td>\n </tr>\n";

}
print "</table>";
#

}
print $debugout;
print $query->end_html;

- 18 -

Raspberry Pi

7. Cronjob for 433Mhz swiching

#!/bin/bash
#REMOTE@ chi /usr/local/bin/kakucronjob

VERBOSE=false
LOG=/tmp/kakucron.log
logsize=$(ls -s $LOG | sed ’s/ .*//’)
if [$logsize -ge 500] ; then

mv $LOG.1 $LOG.2
mv $LOG $LOG.1
touch $LOG

fi

date >>$LOG

if ["$1" = "-v"] ; then
VERBOSE=true

fi

debug(){
if $VERBOSE ; then

echo $*
fi

}

hour=$(date +%H | sed ’s/ˆ0//’)
debug hour=$hour
NOW=$(date)
if [-f codes] ; then

CODEFILE=codes
else

CODEFILE=/var/www/data/kaku/codes
fi
debug CODEFILE=$CODEFILE
declare -A codemap

codefile=$(sed ’s/ /_/g;s/#.*//’ $CODEFILE)
for line in $codefile ; do

debug line=$line
key=${line%*}
codes=${line##*;}
codemap[$key]=$codes
debug codemap filling $key=$codes ${codemap[$key]}

done

debug test ${codemap[test]}

if [-f data] ; then
DATAFILE=data
echo "NO GLOBAL DATA FILE">>$LOG

else
DATAFILE=/var/www/data/kaku/data

fi
debug DATAFILE=$DATAFILE

if [-x /usr/local/bin/newkaku] ; then
KAKU=/usr/local/bin/newkaku

else
KAKU=/bin/echo
echo "NO KAKU COMMAND">>$LOG

fi
debug KAKU=$KAKU

kakucode(){
debug entering kakucode
code="$1"
sub="$2"
state="$3"
codes=${codemap[$code]}
debug code=$code sub=$sub state=$state
debug codes=$codes
while ["$codes" != ""] ; do

c=${codes%%,*}
codes=${codes#*,}
if ["$codes" = "$c"] ; then

codes=’’
fi
echo "$c $sub $state">>$LOG
$KAKU $c $sub $state | logger 2>&1

- 19 -

Raspberry Pi

sleep 1
$KAKU $c $sub $state | logger 2>&1

done
}

if $VERBOSE ; then
echo -n "on: "
cat $DATAFILE | grep "on$hour;" | sed ’s/,.*//’

fi
cat $DATAFILE | grep "on$hour;" | sed ’s/,.*//’ |
while read code ; do

logger "KAKU CRON ON $NOW - $hour: $code"
debug kakucode $code 1 on
kakucode $code 1 on
sleep 1
kakucode $code 1 on
sleep 1

done

if $VERBOSE ; then
echo ""
echo -n "off: "
cat $DATAFILE | grep "off$hour;" | sed ’s/,.*//’

fi
cat $DATAFILE | grep "off$hour;" | sed ’s/,.*//’ |
while read code ; do

logger "KAKU CRON OFF $NOW - $hour: $code"
debug kakucode $code 1 off
kakucode $code 1 off
sleep 1
kakucode $code 1 off
sleep 1

done

if $VERBOSE ; then
echo ""

fi

- 20 -

CONTENTS

1. Headless set-up .. 1

1.1 Intro ... 1

1.2 Burning the image ... 1

1.3 The networking ... 2

1.4 Enable ssh ... 2

1.5 Connecting and manual actions. ... 3

1.6 Security ... 4

1.7 note ... 4

2. 433MHz ... 5

2.1 Introduction ... 5

2.2 Step 1: Transmitter hardware .. 5

2.3 Step 2: Transmitter software ... 6

2.4 A website to switch ... 7

2.5 note ... 8

3. Bitcoin mining with a pi .. 9

3.1 Intro ... 9

3.2 Setting up the miner .. 9

3.3 note ... 10

4. Change to SSL ... 11

4.1 Intro ... 11

4.2 Let’s encrypt ... 11

4.3 Apache .. 12

4.4 note ... 12

5. A mail server .. 13

5.1 Install Citadel on a Pi .. 13

5.2 Fetchmail .. 14

5.3 A backup server .. 14

5.4 note ... 15

6. home.pl .. 16

7. Cronjob for 433Mhz swiching ... 19

i

