Learning

Learning Python

L.J.M. Dullaart

1. Intro

1.1 The problem with learning Python

Learning Python is terrible. All tutorials start with the amazement that you vandmgables (VOW!) to

which you can assign values(Hurray!!). And, although | forced myself to start a number of those courses,
| just cannot spend hours going through that kind of basics anymore.

Most courses will stop at some point stop, inviting you to do your own coding to learn.fArdehat is
mostly the point that it gets interesting.

So, none of the tutorials work and all stop where it gets interesting.

Furthermore, Python has a number of inconsistencies and bizarre concepts éhtienekguage harder
to learn. Did | just say language? | meant languages, because the changes between version 2dnd 3 mak
often impossible to exchange programs between them.

As a tutorial gercise, I'll be rewriting my TCL/Tk application for image administration in Python.

1.2 Quick language overview

1.2.1 Basic concepts
Python is an Object language. So most of the code will be in classes or will be calling classes.

Python uses an indent to create blocks, in stead of {g,ifikJC++, Perl, go, jea, PHP, Scala etcetera or
do/done or the likes. Python is very sensitdb pacing. A block is ended with an empty line.

Comments are marked with #, which is normal for a scripting language.

Python has all the normal flocontrols, while, for if-then-else. The syntax is, that an indented block is
started with a colon, for example:

for item in iterable_collection:

do something

Associatve arays (hashes in Perl) are called dictionaries andveetrare or less that same as Perl’
hashes:

plaatijes = {
'molen’ = 'mooi’,
’straat’ = ’'lelijk’,
'cavia’ = ’lief’,

}

for key, value in plaatjes.iteritems() :
print key, value

molen mooi

straat lelijk

cavia lief

1.2.2 Let’s have an argument
Python allows tw types of arguments:

— positional parameters

— named parameters (calledykord parameters in Python)

Positional parameters are whaey language uses.ggword parameters in general get an initialue
and thg are optional. As an example:

def hello (greet='hi’,dest="all the people’):
print greet, " to ", dest

hello()

hello (dest='"you’)

If you do not knav (or care) hv mary positional parameters and/oeyvord parameters you get, you
can use the c-style pointers:

def print_args(*args, **kwargs):
print ’Positional:’, args
print ’‘Keyword: ", kwargs
for key in kwargs.keys():
print "Key=",key," Value=", kwargs[key]
if key == ’"foo’
print "JA HOOR"

print_args(l, 2, foo=’'bar’, stuff='meep’)

Obviously it's nothing like ¢s pointers, but it easier to remember likthat.

1.2.3 Lists and references
A special place in hell should be reserved for the one wimnied references in Python. Consider the
following:

a = [1, 2, 3]
b =a

a = 1]
print (a)
print (b)

a = [1, 2, 3]
b =a

del af:]
print (a)
print (b)

a = [1, 2, 3]
b = al:]

del af:]
print (a)
print (b)

Which gves as aitput:

[]
[1, 2, 31
[]
[]
[]
[1, 2, 3]

Obviously.

This can only be explained by the fact that (1, 2, 37 assigns a reference to the list 2, 31 to
the variablea and the lines = a assigns the value of a to That means that mgp 2 andn both hae a
reference to the same, 2, 31 Sowhen we da = (1 awill be a reference to an empty list and b will
still have a eference to the original listHowever, if | start doing operations on a list wite1 ar:7 it

-0-

affects the list and not the reference the list. So that means that(which is a reference to the same
list) will now also point to the empty list.

Finally,b = ar:1 forces a copof a. S, because it is a cgpemptying a will not empty b.

Pythons garbage collector for orphans seefiest@afe enough, so you dohhaveto worry about lists that
are unrefferencable.

1.2.4 Tuples
Tuples are lists that you cannot change. Becausedieestatic, thg are faster And the/ use diferent
parentheses. That all there is to kne about them.

Many Python zealots will start talking about mutable and immutable objects; Whiealso point to
semantics, for example:

import time

time.localtime ()

(2008, 2, 5, 11, 55, 34, 1, 36, 0)
where, if you delete the days, the minutes become hours. So thig yowhare ime in tuples instead of
lists.

1.2.5 Variable scoping
Because Python does not allgou to scope variables explicitly (PEP 20: Explicit is better than implicit),
Python uses the following rules:

— Ifavariable is declaregional it is assumed to be part of the global namespace.

— Ifavariable is declareflon1iocal it is part of the parent namespace.

— If you assign a value to a variable, it is assumed to be part of the local namespace, from the

beginning of that context.

— If you do not assign anything to a variable, it assumed implicitly to be part of the parent namespace

— Mutating an object (for example deleting parts of a list) is not considered as an assignment

The real fun starts when there are multiple nested namespaces...

1.3 Input Output
In the previous sections, al numbepefnt statements ha been used.

Reading stdin is a bit more difficult. If you want to read a nupymer can use:

’value=input(’prompt’) ‘

However, if you need a string as input, you must use:

’ value=raw_input (' prompt’) ‘

2. Tkinter
Tkinter is a Python module for the TK-toolkit.

2.1 Hello, world
A first "Hello world" looks lile this:

#!/usr/bin/python

import Tkinter as tk

root = tk.Tk()

w = tk.Label (root, text="Hello world!")
w.pack ()

root.mainloop ()

which gies the following window:

Which is nice. But what did we do?

’import Tkinter as tk

So we imported a module Tkinter and we saydwike to all it tk from now on. It is possible to just
import Tkinter butthen, instead of usingpot = tk.Tk () you would US&oot = Tkinter.Tk() and
SO on.

A lot of the rest is fairly standard Tk. So compare

Python TCL/Tk

root = tk.Tk()

w = tk.Label(root, t&t="Hello label .hello -text "Hello, World!"
world!")

w.pack() pack .hello

and you'll see it is basically the same.

At the end, we do theoot.mainloop () Which starts the tkvent loop. This is the moment that Python
starts the tk loop. In TCL, this is done automatically.

2.2 Hello again
Python uses classes. That means that you generally create classes to do something for you.

#!/usr/bin/python
from Tkinter import *
class App:
def _ _init__ (self, master):
self.frame = Frame (master)
self.frame.pack ()
self.button = Button(
self.frame, text="QUIT", fg="red", command=self.frame.quit
)
self.button.pack (side=LEFT)

self.hi_there = Button(self.frame, text="Hello", command=self.say_hi)
self.hi_there.pack (side=LEFT)

def say_hi (self):
print "hi there, everyone!"

root = Tk()

app = App (root)

root.mainloop ()

root.destroy ()

Let's analyze what we did. First, we created a clags with two methods,

— init
— say_hi

The method _init__ is a standard name. The method gets cadlger the object is created. init_
is not (as some less rigorous people seem to think) a constriit®rreal constructor is called
new__(cls, *args, **kwargs) In general, Python uses alotofinit__ and very seldom new__.

The first argument to all methodsdsi£. The reason for this is that Pythondikto state all sort of
things eplicitly. The fact that there is an inconsistgmetween the calling of a method (wheka r is
always missing) and the declaration does not seem to be a problem. So we need to leaxpheitan e
required and when not.

Therpp object contains a number of Tk objects:
— frame (which is a Frame)
— button with quit
— button with hello
All of these objects get a prefix &1 because, in Python, there is no explicit variable declaration.
It is worth noting that theeif. frame.quit quits the application (the main loop)
2.3 Tkinter widgets

Most of the widgets are the same as in Perl/Tk or TCL/Tk, and the syntax example wiitidhe &bwe
should mak them usable.

Widget Description

Button A simple button

Carvas Structured graphics.

Checkbutton Represents aaviable that can a
two distinct values.

Entry A text entry field.

Frame A container widget.

Label Displays a text or an image.

Listbox Displays a list of alternats.

Menu A menu pane.

Menubutton A menu button.

Message Display a text.

Radiobutton

Represents onealue of a ariable
that can hee e of mang values.

Scale Allows you to set a numerical
value by dragging a “slider”.

Scrollbar Standard scrollbars for use with
carvas, entry listbox, and tet
widgets.

Text Formatted text display.

Toplevel A container widget displayed as a
separate, top-lel window.

LabelFrame A variant of the Frame widget that
can drav both a border and a title.

PanedWindow A container widget that genizes
child widgets in resizable panes.

Spinbox A variant of the Entry widget for

selecting values from a range or an
ordered set.

As an example, a simle way to display an image is:

from Tkinter import *

root = Tk ()

canvas = Canvas (root, width = 400, height = 400)

canvas.pack ()

img = PhotoImage (file="/links/diaadm/images/fullsize/00125.gif")

canvas.create_image (0,0, anchor=NW, image=img)

mainloop ()

3. Mariadb

3.1 Intro
All my data is currently stored in a Maria DB and therefore it is necessary to use the MEm@&ftirmat
is simple: a single table holds all the data.

Name Type Description

number INTEGER Uniquedy for the image

type VARCHAR(255) The directory under
llinks/diaadm where the
image is placed

file VARCHAR(255) The file name for the
image

year INTEGER The year that the picture
is made

month INTEGER The month that the picture
is made

descr VARCHAR(4096) A short description, using
mary keywords

GPS_Latitude VARCHAR(255) Location where the
picture is takn, if
available

GPS_Longitude VARCHAR(255) Location where the
picture is takn, if
awailable

GPS_Altitude VARCHAR(255) Location where the
picture is takn, if
available

ISO_equiv VARCHAR(255) Cop of the JPEG header
if the data is ailable

Aperture VARCHAR(255) Cop of the JPEG header
if the data is wailable

Exposure_time VARCHAR(255) Cop of the JPEG header
if the data is ailable

Focal_length VARCHAR(255) Cop of the JPEG header

if the data is @ailable

All sorts of impravements can be made (a perceptual hash can be cresyedrds in the description can

get their own table), but that will be a later concern.

3.2 Sample program
From the Internet, | retried the following python script.

#!/usr/bin/python

import mysqgl.connector as Mariadb

mariadb_connection

aadm’, host=’127.0.0.1")

mariadb.connect (user=’'diaadm’,

cursor = mariadb_connection.cursor ()

#retrieving information

some_name = "1-3j’

cursor.execute ("SELECT

(some_name,))

for tpe, f, descr in cursor:

print ("Type: {}, File:

type, file,descr FROM

password='diaadm’, database='di-

WHERE descr RLIKE $s",

Description: {}").format (tpe, f,descr)

Before | go into the details, | encountered a number of problems. First problem:

Traceback (most recent call last):
File "maria.py", line 2, in <module>

import mysqgl.connector as mariadb

ImportError: No module named mysqgl.connector

This says that the module is not installed. So that means that you should install the modulgs; ai8ing
(or whaterer your distributions fleor is) or usingip install.

Second problem:;

Traceback (most recent call last):
File "maria.py", line 4, in <module>
mariadb_connection = mariadb.connect (user=’'diaadm’, password='diaadm’, data-—
base=’"diaadm’, host=’127.0.0.1")
File "/usr/lib64/python2.7/site-packages/mysqgl/connector/__init__ .py", 1line 179,
in connect
return MySQLConnection (*args, **kwargs)
File "/usr/lib64/python2.7/site-packages/mysgl/connector/connection.py", line 95,
in __init_
self.connect (**kwargs)
File "/usr/lib64/python2.7/site-packages/mysqgl/connector/abstracts.py", line 719,
in connect
self._open_connection ()
File "/usr/lib64/python2.7/site-packages/mysqgl/connector/connection.py", line 206,
in _open_connection
self._socket.open_connection ()
File "/usr/lib64/python2.7/site-packages/mysqgl/connector/network.py", line 475, in
open_connection
errno=2003, values=(self.get_address(), _strioerror (err)))
mysqgl.connector.errors.InterfaceError: 2003: Can’t connect to MySQL server on
’127.0.0.1:3306" (111 Connection refused)

A MySQL client on Unix can connect to the mysqld server mdifferent ways:

— By using a Unix socket file,
— by using TCP/IPwhich connects through a port number.

My TCL/Tk script connected to a socket, which is more secure, because you deaat &gose the
TCP-port. Apparentlyas a @fault, Pythons module uses a network connection. Searching through the
Internet did not turn up a quick solution to reaRthon behge nmore securelytherefore, | restarted
mariadb with

’# SKIP="--skip-networking"
commented out iNetc/rc.d/rc.mysqld.

3.3 Commitment
Contrary to the other languages | use (Perl, TCL) | use frequéptigon turns autocommit bby
default. Also, the mysql CLI starts with autocommit on. But Pyth6RP0249 states:

Note that if the database supports an auto-commit feature, this must be initially off. An interface method
may be provided to turn it back on.

The problem is that if a session that has autocommit disabled ends wiplicitlg committing the final
transaction, MySQL rolls back that transaction.

So, you hge tree choices:
— Turn on autocommit
— Explicitly commit your changes
— Loose your data

Turning on autocommit can be done directly when you connect to a database:

import mysqgl.connector as mariadb

connection = mariadb.connect (user="testdb’, password=’testdb’,

database=’testdb’, host=’127.0.0.1’,autocommit=True)

or separately:

’connection‘autocommit=True

Explicitly committing the changes is done with

’connection.commit()

Note that the commit is done via the connection to the database, not via the cursor.

4. Design issues

Upto here, eerything was just more or less copying the orignal TCL/Tk functionality in Python.
However, where TCL/Tk code stays relatly compact, with Pithon | ne havea <ript that is about the
same number of lines but implements only a very small part of the functiofi&iigyis a strategy that is
not sustainable.

4.1 Splitting the GUI

In the TCL/Tk version it was one simple GUi; the tree-structure that the GUI has is natural to that
language. IrPython, it is not. So, in order to get a better and more readable codeyevi lteeate
objects that provide a more highkbview of the GUI, instead of the lowel Tk components.

4.1.1 Entryfields

As a first, | hae a umber of entry fields that are preceeded by a label that tells what information should
be in the entry field.

Number

Directory

Filename

Year

Month

Description
So, the combination of a label with an entry field is a good candidate for an object.

class entryfield(object):
def __init__ (self,parent, label='text’):
self.fieldframe=tk.Frame (parent)
self.fieldframe.pack (side=tk.TOP)
self.fieldname=tk.Label (self.fieldframe, text=label ,width=10,anchor='w’)
self.fieldname.pack (side=tk.LEFT)
self.fieldvalue=tk.Entry(self.fieldframe, width=50)
self.fieldvalue.pack (side=tk.RIGHT)
def set (self,value='text’):
self.fieldvalue.delete (0, tk.END)
self.fieldvalue.insert (0, value)
def get (self):
return(self.fieldvalue.get ())

And with that object, creating the part of the GUI in the picturealbecomes:

self.fieldnumber=entryfield(self.fieldframe,’ Number’)
self.fielddir=entryfield(self.fieldframe,’Directory’)
self.fieldfilename=entryfield(self.fieldframe,’Filename’)
self.fieldyear=entryfield(self.fieldframe,’Year’)
self.fieldmonth=entryfield(self.fieldframe,’Month’)

self.fielddescr=entryfield(self.fieldframe,’Description’)

That is clearly more readable than the endless repeats of the tk.Frame, tk.Label, tk.Entry and their packs.

You will notice, that their are a number of assumptions thatentta& object rather specific for my GUI.
The size of the entry fields and labels are fixed, packingwayal TOP etcetera. This makes the
entryfield object good for this GUI, but perhaps a bit less re-usable.

4.1.2 Multilist

The object of the ne object is to create a more reusable object. The problem is thatevenhitiple list
boxes that must scroll synchronously and with a scrollblais functionality existed in the TCLevsion
and in the one-big-gui version, so the main problem is to create a more generally usable object.

class multilist (object)
def __init___ (self,parent,columns=1,height=50,width=10)
self.listframe=tk.Frame (parent)
self.listframe.pack ()
The listframe contains 4 lists and a scrollbar which are synchronized
self.sb = tk.Scrollbar(self.listframe, orient=’vertical’)
self.cols=][]
self.select=[]
for i in xrange (columns) :
self.listnr=tk.Listbox (self.listframe, yscrollcommand=self.yscrollnr)
self.listnr.config(height=height,width=width)
self.listnr.bind(’<<ListboxSelect>>’,self.selectlist)
self.listnr.pack (side=tk.LEFT, expand=True)
self.cols.append(self.listnr)
self.sb.config(command=self.yview)
self.sb.pack(side=tk.RIGHT, fill='y’)
def width(self,column=1,width=10) :
print "set column ",column-1,’ to ’,width
self.cols[column—-1].config(width=width)
def yscrollnr(self, *args):
for i in xrange(len(self.cols)):
self.cols[i].yview_moveto(args([0])
self.sb.set (*args)
def yview(self, *args):
for i in xrange(len(self.cols)):
self.cols[i].yview(*args)
def subscribe (self, function):
self.select.append(function)
def selectlist (self,event):
widget = event.widget
sel=widget.curselection ()
if sel != ():
for £ in self.select:
f (sel)
def clear (self):
for i in xrange(len(self.cols)):
self.cols[i].delete(0,tk.END)
def add(self, *args):
i=0
for val in args:
if 1 < len(self.cols):
self.cols[i].insert (tk.END,val)
i=i+1

else:

print "No column for $val"

Their are still a number of things that neakis object a bit specific, but it should be clear that there are a
number of choices to generalize its use.

First of all, the size (width and height) and the number of columns are part of the callto . Itis
also possible to adjust the column width on a per-column basis. Second, the clear and add methods are
used to manipulate the listbox contents.

Perhaps more interesting is the callback for a selection in the list. Instead of calling a specific function,
external functions/objects/programs can subscribe to the select in the listbox. So multiple functions can be
called, just by subscribing to thigemt.

5. Style
The observation of Pythan'authors is that programs are more often read than written. Therefoye, the
have alopted a specific style guide. If you're writing Pythhon code, you should adher to it, because

— others that see your programs will nag about it
— if you're used to the style, it will be easier to read programs by others

There are some strange choices in the PEP8 standagdniBie programs needlessly long and, for a
beginning Python programmdnarder to read. Theare also inconsistent in a number of ways.

This chapter does nokglain the complete PEPS8. | thvemy code through an on-line PEP8 checker and
these are the errors that | found in my code and my observation of them.

5.1 Spaces
Equal signs must ka gpaces around them, for example:

’a = 1+1 ‘
Unless, the equal sign is used for an assignment of namgechants. Otheoperators should not ha
spaces around them.

A comma should hae a pace after it.

’a=function(arg1, arg2)

And parentheses do not get spaces.

The colon that is used for block starts should also not get a space:

’def function (arg) :

And comments start with
4 + (hash-space).

5.2 Line length
Maximum line length is 80. Wi{? Because the IBM punch-card format, introduced in 1928 had 80
columns.

5.3 Indent

One of the horrors of Python isstititude tavards indents. Indents are used to mark blocks. Indents are
4 gaces. Not a tab, four spaceBgether with the 80-column limit, this also means a maximum for
nesting blocks (19), but if you hit that limit, you should restructure your code anyway.

6. Common tasks

6.1 Configuration files

6.1.1 In Perl
What we're trying to accomplish ist the Python egl@nt of

$config={};
open (CFG, "testfile.txt");
while (<CFG>) {
s/#.%//;
if (/(\wH)=(.*)/){
Sconfig{$1}=$2;
print "config{$1}=$2; S$config{$1l}\n";

}

So, a simple configuration file, with comments and simple a=b assignments. While reding, wanalso w
some sanity-checks, whitch is done by the matching of the regular expressions. The result should be some

form of hash/dictionary in which we can lookup the values by text.

6.1.2 configobj

The Python-way seems to be to google if there is a module that does it for you and then use that module.

There are a number of modules that read config files, and configobj seems the most simple one.
If it would work.
Try 1:

import configobj
config=configobj.configobj("testfile.txt")
Result:

Traceback (most recent call last):
File "configobj.py", line 2, in <module>
import configobj
File "/home/ljm/src/learning_python/configobj.py", line 3, in <module>

config=configobj.configobj("testfile.txt")

TypeError: 'module’ object is not callable

The type ofconfigobj.configobj iS @ module. That is a bit uxqgected. Especially since maanswers
on the Internet suggest thainfigobj is the module andonfigobj.configobj Should be the way to
use it. But apparentlyt is not.

import configobj

print type (configobij)

print type (configobj.configobj)

print type (configobj.configobj.configobij)

gives:

<type ’'module’>
<type ’'module’>
<type ’'module’>
<type ’'module’>
<type ’'module’>

<type ’'module’>

Try 2:

’from configobj import configobj

which gies:

Traceback (most recent call last):
File "configobj.py", line 2, in <module>
from configobj import configobj
File "/home/ljm/src/learning_python/configobj.py", line 2, in <module>
from configobj import configobj

ImportError: cannot import name configobj

Camel-humping the config obj results in yet another import error:

Traceback (most recent call last):
File "configobj.py", line 2, in <module>
from configobj import ConfiGobj
File "/home/ljm/src/learning_python/configobj.py", line 2, in <module>
from configobj import ConfiGobj

ImportError: cannot import name ConfiGobj

This also means that none of the configobj examples work. And because umierstand what is
happening (behavior does not comply witly ahthe solutions that | got), | will abandon this module.

6.1.3 ConfigParser
Another module that does the configuration is CorafigéX It requires a more complicates configuration
file.

import ConfigParser

config = ConfigParser.RawConfigParser ()
config.read(’testfile.txt’)
a=config.get (' notes’, "do")

print a

You must hae aisection header] in the file, otherwise the module will fail.

Traceback (most recent call last):
File "configparser.py", line 4, in <module>
config.read(’testfile.txt’)
File "/usr/lib64/python2.7/ConfigParser.py", line 305, in read
self._read(fp, filename)
File "/usr/lib64/python2.7/ConfigParser.py", line 512, in _read
raise MissingSectionHeaderError (fpname, lineno, line)

ConfigParser.MissingSectionHeaderError: File contains no section headers.

file: testfile.txt, line: 1

eventhough the module is documented (https://dgtisqm.org/2/library/configparsétml), there is still
a lot unclear about its workings. Ah well, that also seems to be the Python way.

6.1.4 Import
There are some that suggest that usifgrt and creating valid ython code as config file is a good
idea. lItis not.

Ofcourse, if gerything is completely under control, and your useosvput code in the config file, then
it may not be so bad. But if your user is anyone else but yourself,diothis.

6.2 Command line arguments

6.2.1 Sys.argv

If you want to interact with anything beyond the most simplset, you need to igort In sys there is
an arraysys.argv that contains the arguments. eiverywhere elsesys.argvi0o1 contains the name of
the script or program.

6.2.2 Getopt

A more or less standard way of parsinguanents is getopt. This izalable in C, Perl, Bashe and man
others, and also in Python. Wever, because it is standard, Python doesike it. The official stance is
that getopt is not deprecatedjtbargparse is more aetly maintained and should be used fomwne
development.

The following sniplet shows the use of getopt:

#!/usr/bin/python
import sys, getopt
try:
opts, args = getopt.gnu_getopt (sys.argv[l:],"he:q:", ["question=", "exclamation="])
except getopt.GetoptError:
print sys.argv[0], ’'[-e excalamation] [—-g question]’
sys.exit (2)

for opt, arg in opts:

if opt == "-h’:
print sys.argv[0], ’'[-e excalamation] [—-g question]’
sys.exit ()

elif opt in ("-g", "--question"):

print arg,’?’
elif opt in ("-e", "--exclamation"):

print arg,’!’

print ’arg=’,args
Note thatgetopt .gnu_getopt getSsys.argvi1:] as list of options.sys.argv[0] contains the name of
the script and would therefore mess-up the argument parsing.

We wsedgnu_getopt because otherwise, parsing of the flags stops when the first non-flag argument is
encoutered.

The result is shown beio

$ python getops.py —-g question answer —--exclamation yes oh
question ?

yes !

arg= [’answer’, ’oh’]

6.2.3 agparse
Agparse is at the moment the prefered option to parse commandgilimeeants. lis more advanced than
getops, and it has a nice self-documenting feature.

6.3 Regular expression matching
If there's anything Perl is good in, it is handling regulagpeessions. IPython, this is made complicated.
As if the goal is to discourage the use.

First: it is not standard in Python. It is an add-on that needs to be imported.

’import re

7. Evaluation so far
I now haveimplemented xactly the same functionality in Python as | haédilable in the TCL/Tk script.
It is now time for a shortealuation.

7.1 Speed
The Python script is noticably slower than the TCL/Tk edlant, epecially at start-up. Something needs
to be done about that otherwise Python scripts become unusable.

The speed differnce is mostly in three places:
— start-up
— looping wer the mysql-cursor
— adding items to listboxes

The way | found this is by putting time print out in specific functions:

from datetime import datetime
def printnow(string):

dt = datetime.now ()

print string, dt.second, dt.microseconds

and calling thisorintnow at specific places in the cod&ou can ofcourse addt.minutes but if the
execution would require me to add the minutes, | would abandpffuather exploration of Python.

The result for the loopingwer the cursor (‘cursonexcuted’ to
‘copied to the list’) are 1.3 seconds, as can be seen below:

get_selection 45 470185
cursor.executed 46 249354
copied to the list 47 554510
showlist start 47 554571
list cleared 47 633019

list filled 48 351590

The complete update of the listbox from the database is 2.8 seconds, which is clearly much more than the
almost instantanous response from TCL/Tk.

7.2 Code size

Pythons mde size in lines is significantly ter than TCL/Tk. Python is a language that likes to do
evaything \ertically. With a maximum linesize of 80 characters, the codesize in lines quickly becomes
very large. The pthon version is 549 lines, and the TCL/Tk is 337. In characters, Python is more than
75% larger.

7.3 Readability

Code from Python is mginally better readable. My screen is (vertically) around 80 lines, which makes it
impossible to get a goodverview of sections in the Python code in one screen. The punch-card
restriction of 80 columns, compared with the 180 columns of the terminal screen, makes itefeel lik
Python has made some odd choices.

7.4 Variable typing
One thing that is bewildering is the strong typing of Python in combination with its dynamic typing.

In Perl, you can:

Sa=2;
$b="1+1=".$a;
print $b;

to get "1+1=2".

In Python, this results in:

>>> a=2
>>> b="1+1=" + a
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: cannot concatenate ’str’ and ’"int’ objects

Note that you can assigr’ 2’ even dter it once was an integefThat is called dynamic typing.

The combination of dynamic typing and strong typingegiedditional constructions like:

[b="1+1-{0}’ . format ((a))
which require quite a bit of Python specific reasoning to justify.

7.5 Libraries
Python has a lot of libraries that do different things, andyrttzett do the same thing. There is no way to
tell if these libraries will be continued, if there part of standards or anythingdithat.

Further more, all sorts of installation methods are used, frofat-get tO easyinstall and pip

install and lets ot forget compiling from source. The libraries are also akr dhe place; a
standardization in location seems difficult. Add to this the version 2 and version 3 problems and the
framaworks, and you’'ll get XKCDs installation of Python.

8. References

| used a number of resources to learn Python. Sorefaamore elaboratexes on the subject. there are
ofcourse other sources of informatiomt bhis is what | usedl havenot listsed all the google searches
that helped me with specific questions.

http://effbot.org/tkinterbook/ An introducyion to Tkinter
https://lwww.programiz.com/article/python-self-wthe explanation ofe1t in python classes
http://spyhce.com/blog/understanding-new-and-init for the difference between and__init_ .
http://www.mysqltutorial.org/python-mysql/ for the mysql interface.

http://pep8online.com/ for checking PEP8 complianc

CONTENTS

T [TP PP PPPPPPPPPPPTPTP 0
1.1 The problem with learning PYIhON...........ooi e 0
2 @ 0o S F= U o [0 =T =Y - 1= SRR 0
R T [T 0T L1 o 11 2

B 14 1= PP OPPPPR 2
P2 R o =1 o ALY ¢ o [RSP PR 2
2 o 1= [T J= o - V1 o USSR 3
22 T I 11 (= /T [1= £ EEPRRR 4

B = T To | o PRSP 5
G T A 1111 o TP PP PPPPPPPPPRPPPRP 5
TS Y- 0] o] 1= 0o - o 1SS 6
KR N ©7o 0171 1011 1.4 =1 0 | PSPPI 7

B B =] To] o IS 1= PR 8
4.1 SPHENG the GUI ettt e e s sttt e e e e snb e e e e snbbee e e e e neee 8

S 1 [PPERRR 11
L0t S o - o LSS 11
L7 N 1= 1Y o | o o PR 11
ESIR [0To =0 | PSPPSR 11
(070] 1010310] 4 =T 2 PP 11
6.1 Configuration filEScooi it e e e 11
6.2 ComMANd liNE AIQUMENTS......ciiieeeiis ittt e e e e e e e e s s s e e e e e e e e s e s s s eeeeeeeeeesesannnsnnannnrenaaeeaes 13
6.3 Regular expression MAatChING..........uiriieeiii i e e e e s e e e e e e e e e e e s e annnrrneeees 14

o BVAIUALION SO FAI .ot neee 15
408 TS == o PP 15
A o o L= = PR TP 15
4 T = ST T L= o 11 PR 15
A V= T =1 o] (=30 4] o 11 o PSR 15
AR T T o] =T T TSRO 16

B = (=T (= ot P PP PRR 16

