
Background ���

ACL

ljm

1. ACLs on routers

1.1 Intro
Routers are able to filter the network traffic. This is a short demonstration of how that works. We’ll be
using a debian machine for generating the traffic and another for answering the services.

Last run 2020-07-31
Verified: 2018-04-27.
Upgraded 2020-02-01; added line for unpredictable network adapter names in start-up scripts.

1.2 The network
We use a simple network, static routing, nothing special.

The Vagrantfile contains:

-*- mode: ruby -*-

vi: set ft=ruby :

Vagrantfile API/syntax version. Don’t touch unless you know what you’re doing!

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

config.vm.define :xenial1 do |t|

t.vm.box = "ubuntu/xenial64"

t.vm.box_url = "file:////links/virt_comp/vagrant/boxes/xenial64.box"

t.vm.provider "virtualbox" do |prov|

prov.customize ["modifyvm", :id, "--nic2", "hostonly", "--hos-

tonlyadapter2", "vboxnet1"]

end

t.vm.provision "shell", path: "./setup.xenial1.sh"

end

config.vm.define :xenial2 do |t|

t.vm.box = "ubuntu/xenial64"

t.vm.box_url = "file:////links/virt_comp/vagrant/boxes/xenial64.box"

t.vm.provider "virtualbox" do |prov|

prov.customize ["modifyvm", :id, "--nic2", "hostonly", "--hos-

tonlyadapter2", "vboxnet2"]

end

t.vm.provision "shell", path: "./setup.xenial2.sh"

end

config.vm.define :xenial3 do |t|

t.vm.box = "ubuntu/xenial64"

t.vm.box_url = "file:////links/virt_comp/vagrant/boxes/xenial64.box"

t.vm.provider "virtualbox" do |prov|

prov.customize ["modifyvm", :id, "--nic2", "hostonly", "--hos-

tonlyadapter2", "vboxnet3"]

end

t.vm.provision "shell", path: "./setup.xenial3.sh"

end

config.vm.define :xenial4 do |t|

t.vm.box = "ubuntu/xenial64"

t.vm.box_url = "file:////links/virt_comp/vagrant/boxes/xenial64.box"

t.vm.provider "virtualbox" do |prov|

prov.customize ["modifyvm", :id, "--nic2", "hostonly", "--hos-

tonlyadapter2", "vboxnet4"]

end

t.vm.provision "shell", path: "./setup.xenial4.sh"

end

end

and the initial router-settings are:

- 0 -

ip routing

interface FastEthernet0/0

ip address 10.128.1.1 255.255.255.0

no shutdown

interface FastEthernet0/1

ip address 10.128.2.1 255.255.255.0

shutdown

no shutdown

The setup.xenial files contain the initial IP configuration.

setup.xenial1.sh:

ETH1=$(dmesg | grep -i ’renamed from eth1’ | sed -n ’s/: renamed from eth1//;s/.*

//p’)

ifconfig $ETH1 10.128.1.101 netmask 255.255.255.0 up

route add -net 10.128.0.0 netmask 255.255.0.0 gw 10.128.1.1

setup.xenial2.sh:

ETH1=$(dmesg | grep -i ’renamed from eth1’ | sed -n ’s/: renamed from eth1//;s/.*

//p’)

ifconfig $ETH1 10.128.2.100 netmask 255.255.255.0 up

route add -net 10.128.0.0 netmask 255.255.0.0 gw 10.128.2.1

setup.xenial3.sh:

ETH1=$(dmesg | grep -i ’renamed from eth1’ | sed -n ’s/: renamed from eth1//;s/.*

//p’)

ifconfig $ETH1 10.128.1.101 netmask 255.255.255.0 up

route add -net 10.128.0.0 netmask 255.255.0.0 gw 10.128.1.1

setup.xenial4.sh:

ETH1=$(dmesg | grep -i ’renamed from eth1’ | sed -n ’s/: renamed from eth1//;s/.*

//p’)

ifconfig $ETH1 10.128.2.101 netmask 255.255.255.0 up

route add -net 10.128.0.0 netmask 255.255.0.0 gw 10.128.2.1

2. Setting up the server

2.1 Goal
Our goal is to set-up a server that responds to a telnet-request on a set of ports. This will allow us to test
quickly whether a service is reachable or not.

2.2 Inetd
The simplest way to create a service on Linux is to let them be started by theinetd On Debian, this
means installing theinetutils-inetd. As always, it also means that we need to disable the automatic
start-up at boot and launch it ourselves.

apt-get install inetutils-inetd

rm /etc/rc*.d/*inetutils*

Next, we need to set-up a simple service that allows us to see whether we can actually connect. Our
simple service looks like this:

- 0 -

echo $0 $*

There are 10 versions of this file, called/root/s900 to /root/s909.

The following lines are added to/etc/services

s900 900/tcp

s901 901/tcp

s902 902/tcp

s903 903/tcp

s904 904/tcp

s905 905/tcp

s906 906/tcp

s907 907/tcp

s908 908/tcp

s909 909/tcp

and we add the following lines to/etc/inetd.conf

s900 stream tcp4 nowait root /root/vbox/acl/s900 /root/vbox/acl/s900

s901 stream tcp4 nowait root /root/vbox/acl/s901 /root/vbox/acl/s901

s902 stream tcp4 nowait root /root/vbox/acl/s902 /root/vbox/acl/s902

s903 stream tcp4 nowait root /root/vbox/acl/s903 /root/vbox/acl/s903

s904 stream tcp4 nowait root /root/vbox/acl/s904 /root/vbox/acl/s904

s905 stream tcp4 nowait root /root/vbox/acl/s905 /root/vbox/acl/s905

s906 stream tcp4 nowait root /root/vbox/acl/s906 /root/vbox/acl/s906

s907 stream tcp4 nowait root /root/vbox/acl/s907 /root/vbox/acl/s907

s908 stream tcp4 nowait root /root/vbox/acl/s908 /root/vbox/acl/s908

s909 stream tcp4 nowait root /root/vbox/acl/s909 /root/vbox/acl/s909

Thetcp4 is the protocol name. This is a non-standard in the Debian distribution. Standard would be just
tcp but Debian decided that that would refer to IPv6 only. Of course, we need to install the inetd:

apt-get -y install openbsd-inetd

And then, we can telnet into our new services:

$ vagrant ssh precise3 -c ’telnet 127.0.0.1 902’

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is ’ˆ]’.

/root/s902

Connection closed by foreign host.

Connection to 127.0.0.1 closed.

A complete setup-script for precise1 would then be:

- 0 -

ETH1=$(dmesg | grep -i ’renamed from eth1’ | sed -n ’s/: renamed from eth1//;s/.*

//p’)

ifconfig $ETH1 10.128.1.101 netmask 255.255.255.0 up

route add -net 10.128.0.0 netmask 255.255.0.0 gw 10.128.1.1

for f in s900 s901 s902 s903 s904 s905 s906 s907 s908 s909

do

cp /vagrant/service.sh /root/$f

chmod a+rx /root/$f

done

cat >> /etc/services <<EOF

s900 900/tcp

s901 901/tcp

s902 902/tcp

s903 903/tcp

s904 904/tcp

s905 905/tcp

s906 906/tcp

s907 907/tcp

s908 908/tcp

s909 909/tcp

EOF

cat >>/etc/inetd.conf <<EOF

s900 stream tcp4 nowait root /root/s900 /root/s900

s901 stream tcp4 nowait root /root/s901 /root/s901

s902 stream tcp4 nowait root /root/s902 /root/s902

s903 stream tcp4 nowait root /root/s903 /root/s903

s904 stream tcp4 nowait root /root/s904 /root/s904

s905 stream tcp4 nowait root /root/s905 /root/s905

s906 stream tcp4 nowait root /root/s906 /root/s906

s907 stream tcp4 nowait root /root/s907 /root/s907

s908 stream tcp4 nowait root /root/s908 /root/s908

s909 stream tcp4 nowait root /root/s909 /root/s909

EOF

apt-get -y install openbsd-inetd

ps -ef | grep inet

Theps is there to show that the inetd works.

3. ACL Basics

3.1 Introduction
Cisco uses ACLs to filter traffic. ACLs are also used in different contexts, like for example NAT . Access
lists consist of a number of permit and deny rules. ACLs are placed on an interface and there are inbound
and outbound ACLs.

People tend to view a router with ACLs as a sort of firewall thing. The main difference is that a router in
general does not do statefull filtering. If statefull filtering is used (Cisco calls it reflexive), it consumes a
lot of resources on the router.

There are two types of ACL:

— standard: deny from source IP addresses

— extended: allow more criteria, like port numbers, destination and protocol

- 0 -

ACLs are numbered:

standard 1-99 1300-1999

extended 100-199 2000-2699

In general, you will make a design based on what you wantt to filter, where and why. Before you do
however, you need to know the properties of the filtering and the options. It is exactly this what we want
to do here.

The simpler filter ACLs are, the better. Although routers can be re-configured from time to time, in
general the management tooling is not made for frequent rule changes (like in firewalls).

3.2 ACL types
Filtering ACLs are connected to an interface. ACLs that are used for filtering can be

— inbound

— outbound

There are two types of ACL:

— standard: deny from source IP addresses

— extended: allow more criteria, like port numbers, destination and protocol

ACLs are named or they are numbered:

standard 1-99 1300-1999

extended 100-199 2000-2699

Standard ACLs are much more simple than extended. Standard ACLs only allow filtering of source IP.
The following table gives the idea behind ACLs:

- 0 -

type: numbered named

ID: number name

configure with global commands sub commands

standard
numbered

standard
named

standard matching:
source IP address

extended
numbered

extended
named

extended matching:
source & dest.
IP source & dest.
port
other criteria

In general, the most ACLs that I have seen are extended numbered.

ACLs are followed top-to-bottom; the first matching rule defines the action.

3.3 Creating ACLs

3.3.1 Standard numbered

Matching a single IP address:

access-list 1 permit 10.128.1.101

Matching a subnet is a bit counter-intuitive. Cisco has chosen to create a "wildcard mask" for this, in
stead of using the normal subnet mask. Mainly to annoy people, I presume. The wildcard mask is the
inverse of the subnet mask, for all practical purposes. An example then would be:

access-list 2 permit 10.128.2.0 0.0.0.255

3.3.2 Extended numbered

Extended ACLs allow a finer control of the filtering. The syntax is:

access-list <number> {permit|deny} <protocol> <source> <destination> [port specifica-

tion] [other options]

parameter explanation

access-list the keyword to define the accesslist

number the number of the ACL; 100-199
or 2000-2699 for extended ACLs

permit|deny allow or deny ation for this rule

protocol name of the IP protocol. Usually
ip, tcp, udp or icmp.

source can be a single host or an subnet
with wildcard mask

destination can be a single host or an subnet
with wildcard mask

port specification an operator (lt (less than), gt
(greater than), eq (equal), ne (not
equal) or range) with e port
specification.

other options mostly used to specify
’established’ to allow only one
direction of the traffic.

- 0 -

The source and destination can be:

any the any keyword matches any ip
address

host <ip address> the host-keyword, followed by an
IP address matches a single host

<ip address> <wildcard mask> matches a subnet; the wildcard
mask has been described above.

3.3.3 Named ACLs

Although named ACLs should provide some more documentational advantages, I have seldom seen them
being used. The definition is a bit different, but the concepts are more or less the same.

ip access-list standard filtername

permit 10.128.1.101

permit 10.128.1.102

Likewise, extended ACLs can be created. Functionally, the named ACLs are the same as their numbered
cousins. Therefore,we’l not continue with these named ACLs.

4. Example ACLs

4.1 A standard ACL
In our test network, we will allow precise1 to access the precise3 and 4, but we will disallow precise2 that
access.

source destination action

precise1 precise3, precise4 allow

precise2 precise3, precise4 deny

Because this is just a simple exersice, we will not place any filters for the return traffic. The ACL
becomes:

access-list 1 permit 10.128.1.101

access-list 1 deny 10.128.1.102

And we will apply it to interface f0/0 incoming:

interface FastEthernet0/0

ip access-group 1 in

To test, a simple ping will do; standard ACLs do not use protocol or port filtering.

- 0 -

[ljm@verlaine acl]$ vagrant ssh precise1 -c ’ping -c1 10.128.2.103’

PING 10.128.2.103 (10.128.2.103) 56(84) bytes of data.

64 bytes from 10.128.2.103: icmp_req=1 ttl=63 time=13.6 ms

--- 10.128.2.103 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 13.672/13.672/13.672/0.000 ms

Connection to 127.0.0.1 closed.

[ljm@verlaine acl]$ vagrant ssh precise2 -c ’ping -c1 10.128.2.103’

PING 10.128.2.103 (10.128.2.103) 56(84) bytes of data.

From 10.128.1.1 icmp_seq=1 Packet filtered

--- 10.128.2.103 ping statistics ---

1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms

Connection to 127.0.0.1 closed.

[ljm@verlaine acl]$

Removing the ACL is done with theno keyword:

r1#conf t

Enter configuration commands, one per line. End with CNTL/Z.

r1(config)#int f0/0

r1(config-if)#no ip access-group 1 in

r1(config-if)#ˆZ

r1#conf t

r1(config)#no access-list 1

r1(config)#ˆZ

r1#

And a verification that the access-list is now gone:

[ljm@verlaine acl]$ vagrant ssh precise1 -c ’ping -c1 10.128.2.103’

PING 10.128.2.103 (10.128.2.103) 56(84) bytes of data.

64 bytes from 10.128.2.103: icmp_req=1 ttl=63 time=33.8 ms

--- 10.128.2.103 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 33.857/33.857/33.857/0.000 ms

Connection to 127.0.0.1 closed.

[ljm@verlaine acl]$ vagrant ssh precise2 -c ’ping -c1 10.128.2.103’

PING 10.128.2.103 (10.128.2.103) 56(84) bytes of data.

64 bytes from 10.128.2.103: icmp_req=1 ttl=63 time=28.8 ms

--- 10.128.2.103 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 28.880/28.880/28.880/0.000 ms

Connection to 127.0.0.1 closed.

[ljm@verlaine acl]$

4.2 Extended numbered
Extended numbered ACLs offer greater flexibility. To show this, we will allow the following trafic:

- 0 -

source destination port action

precise1 precise3 tcp 901,tcp902 allow

precise1 precise4 tcp 903,tcp904 allow

precise2 precise3 tcp 905,tcp906 allow

precise2 precise3 tcp 907,tcp908 allow

precise3 precise1,precise2 tcp_909 allow

This table sees the router as a single filtering component between the two networks. But that is not the
way that a router works. There will be differnt ACLs, based on the direction of the traffic. Also, we need
to consiider on which interface the ACLs are placed. Cisco recommends:

— place extended ACLs close to the source

— place standard ACLs close to the destination But that guideline does not look at the fact that you
may have a loopback address available in your router.

We’l l define two ACLs, one from 10.128.1.0/24 to 10.128.2.0/24 and one the otherway around:

access-list 110 permit tcp host 10.128.1.101 host 10.128.2.103 eq 901

access-list 110 permit tcp host 10.128.1.101 host 10.128.2.103 eq 902

access-list 110 permit tcp host 10.128.1.101 host 10.128.2.104 eq 903

access-list 110 permit tcp host 10.128.1.101 host 10.128.2.104 eq 904

access-list 110 permit tcp host 10.128.1.102 host 10.128.2.103 eq 905

access-list 110 permit tcp host 10.128.1.102 host 10.128.2.103 eq 906

access-list 110 permit tcp host 10.128.1.102 host 10.128.2.104 eq 907

access-list 110 permit tcp host 10.128.1.102 host 10.128.2.104 eq 908

access-list 110 permit tcp any any established

access-list 111 permit tcp host 10.128.2.103 host 10.128.1.101 eq 909

access-list 111 permit tcp host 10.128.2.103 host 10.128.1.102 eq 909

access-list 111 permit tcp any any established

Any traffic that has the ’established’-bit set is allowed. This allows return-traffic in an existing session to
pass through the router.

The access-list 110 is put on f0/0 as input list and 111 on f0/1 as input.

int f0/0

ip access-group 110 in

int f0/1

ip access-group 111 in

Verifying gives:

- 0 -

vagrant ssh precise1 -c ’telnet 10.128.2.103 901’

Trying 10.128.2.103...

Connected to 10.128.2.103.

Escape character is ’ˆ]’.

/root/s901

Connection closed by foreign host.

Connection to 127.0.0.1 closed.

[ljm@verlaine acl]$ vagrant ssh precise1 -c ’telnet 10.128.2.103 902’

Trying 10.128.2.103...

Connected to 10.128.2.103.

Escape character is ’ˆ]’.

/root/s902

Connection closed by foreign host.

Connection to 127.0.0.1 closed.

[ljm@verlaine acl]$ vagrant ssh precise1 -c ’telnet 10.128.2.103 903’

Trying 10.128.2.103...

telnet: Unable to connect to remote host: No route to host

Connection to 127.0.0.1 closed.

vagrant ssh precise3 -c ’telnet 10.128.1.101 909’

Trying 10.128.1.101...

Connected to 10.128.1.101.

Escape character is ’ˆ]’.

/root/s909

Connection closed by foreign host.

Connection to 127.0.0.1 closed.

[ljm@verlaine acl]$ vagrant ssh precise3 -c ’telnet 10.128.1.101 908’

Trying 10.128.1.101...

telnet: Unable to connect to remote host: No route to host

Connection to 127.0.0.1 closed.

The rest is also as expected.

5. How secure are router ACLs

5.1 Introduction
Cisco states in http://www.cisco.com/c/en/us/support/docs/ip/access-lists/13608-21.html "Devised to
prevent unauthorized direct communication to network devices, infrastructure access control lists (iACLs)
are one of the most critical security controls that can be implemented in networks." Buthow effective are
those ACLs?

To see how effectiv the ACLs are, we introduce another host, Kali. This is a virtual machine with Kali
linux which has an eth1 adapter on vboxnet0. This virtual machine is not provisioned by Vagrant, so we’ll
need to do some manual configuration:

ifconfig eth1 10.128.1.10 netmask 255.255.255.0

route add -net 10.128.0.0 netmask 255.255.0.0 gw 10.128.1.1

This is more or less the same as for precise1 and precise2. And, because it is on sw1, we can ping
precise1:

- 0 -

ping 10.128.1.101

PING 10.128.1.101 (10.128.1.101) 56(84) bytes of data.

64 bytes from 10.128.1.101: icmp_seq=1 ttl=64 time=1.38 ms

64 bytes from 10.128.1.101: icmp_seq=2 ttl=64 time=0.916 ms

64 bytes from 10.128.1.101: icmp_seq=3 ttl=64 time=0.910 ms

ˆC

--- 10.128.1.101 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms

rtt min/avg/max/mdev = 0.910/1.069/1.381/0.220 ms

5.2 Ping
But pinging the router from Kali must fail (we did not permit incoming ICMPs):

ping 10.128.1.1

PING 10.128.1.1 (10.128.1.1) 56(84) bytes of data.

From 10.128.1.1 icmp_seq=1 Packet filtered

From 10.128.1.1 icmp_seq=2 Packet filtered

From 10.128.1.1 icmp_seq=3 Packet filtered

ˆC

--- 10.128.1.1 ping statistics ---

3 packets transmitted, 0 received, +3 errors, 100% packet loss, time 2009ms

What is interesting is that we see that ping actually sees that the router is there (otherwise we would get a
"destination host unreachable") The image below shows what happens. First a ping from Kali to
10.128.1.2 (a non-existing address), then a ping to 10.128.1.1 (the router).

The ping to the non-existing address does not pass the arp-phase.However, for the 10.128.1.1, the router
replies to the ARP. Furthermore, the router replies with an ICMP 70 (Destination unreachable).

5.3 What is behind the router?
Ping is nice, but anything behind the router is invissible for the pings. The router effectively hides the
network behind the router. The response for precise3 is the same as for 10.128.2.109 (a non-existing
host).

Of course, no-one will be discouraged by this. Nmap is always availabe on Kali:

- 0 -

nmap -sA 10.128.2.0/24

Starting Nmap 7.25BETA2 (https://nmap.org) at 2016-12-30 12:12 EST

Nmap scan report for 10.128.2.1

Host is up (0.078s latency).

All 1000 scanned ports on 10.128.2.1 are unfiltered

Nmap scan report for 10.128.2.103

Host is up (0.26s latency).

All 1000 scanned ports on 10.128.2.103 are unfiltered

Nmap scan report for 10.128.2.104

Host is up (0.15s latency).

All 1000 scanned ports on 10.128.2.104 are unfiltered

Nmap done: 256 IP addresses (3 hosts up) scanned in 95.53 seconds

How is that possible? Wireshark shows the way this works:

We opened-up the return traffic rather wide: all established traffic is let through. You can ofcourse limit
this traffic by allowing only specific return traffic. This effictively doubles the size of your access-list.
That means that you will make a trade-off between manegeability and security.

It may also be a good idea to get a firm control of any trafic that leaves the router. The recomendation to
place extended ACLs close to the source is therefore perhaps not such a good idea.

However, the router is still a stateless inspection device. Each packet is examined individually; no
mechanism exists to relate a packet to an existing session. This, in addition to the fact that router ACLs
are not really easily managed, introduces the need for a more sophisticated device, the firewall.

- 0 -

CONTENTS

1. ACLs on routers ... 0
1.1 Intro ... 0
1.2 The network .. 0

2. Setting up the server .. 2
2.1 Goal ... 2
2.2 Inetd .. 2

3. ACL Basics .. 4
3.1 Introduction ... 4
3.2 ACL types ... 5
3.3 Creating ACLs .. 6

4. Example ACLs ... 7
4.1 A standard ACL .. 7
4.2 Extended numbered.. 8

5. How secure are router ACLs.. 10
5.1 Introduction ... 10
5.2 Ping ... 11
5.3 What is behind the router?.. 11

i

